Analysis and Prediction of Exon Skipping Events from RNA-Seq with Sequence Information Using Rotation Forest

نویسندگان

  • Xiuquan Du
  • Changlin Hu
  • Yu Yao
  • Shiwei Sun
  • Yanping Zhang
چکیده

In bioinformatics, exon skipping (ES) event prediction is an essential part of alternative splicing (AS) event analysis. Although many methods have been developed to predict ES events, a solution has yet to be found. In this study, given the limitations of machine learning algorithms with RNA-Seq data or genome sequences, a new feature, called RS (RNA-seq and sequence) features, was constructed. These features include RNA-Seq features derived from the RNA-Seq data and sequence features derived from genome sequences. We propose a novel Rotation Forest classifier to predict ES events with the RS features (RotaF-RSES). To validate the efficacy of RotaF-RSES, a dataset from two human tissues was used, and RotaF-RSES achieved an accuracy of 98.4%, a specificity of 99.2%, a sensitivity of 94.1%, and an area under the curve (AUC) of 98.6%. When compared to the other available methods, the results indicate that RotaF-RSES is efficient and can predict ES events with RS features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Event-level prediction and quantification of transcript isoforms from RNA-seq data

RNA-seq data are informative for the analysis of known and novel transcript isoforms. While the short length of RNA-seq reads limits the ability to predict and quantify full-length transcripts, short read data are well suited for the analysis of individual alternative transcript events (e.g. inclusion or skipping of a cassette exon). Available event-centric methods typically rely on annotated t...

متن کامل

LaSSO, a strategy for genome-wide mapping of intronic lariats and branch points using RNA-seq.

Both canonical and alternative splicing of RNAs are governed by intronic sequence elements and produce transient lariat structures fastened by branch points within introns. To map precisely the location of branch points on a genomic scale, we developed LaSSO (Lariat Sequence Site Origin), a data-driven algorithm which utilizes RNA-seq data. Using fission yeast cells lacking the debranching enzy...

متن کامل

Computational analysis reveals a correlation of exon-skipping events with splicing, transcription and epigenetic factors

Alternative splicing (AS), in higher eukaryotes, is one of the mechanisms of post-transcriptional regulation that generate multiple transcripts from the same gene. One particular mode of AS is the skipping event where an exon may be alternatively excluded or constitutively included in the resulting mature mRNA. Both transcript isoforms from this skipping event site, i.e. in which the exon is ei...

متن کامل

Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues

Alternative splicing is widely recognized for its roles in regulating genes and creating gene diversity. However, despite many efforts, the repertoire of gene splicing variation is still incompletely characterized, even in humans. Here we describe a new computational system, ASprofile, and its application to RNA-seq data from Illumina's Human Body Map project (>2.5 billion reads).  Using the sy...

متن کامل

Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast.

Exon skipping is considered a principal mechanism by which eukaryotic cells expand their transcriptome and proteome repertoires, creating different splice variants with distinct cellular functions. Here we analyze RNA-seq data from 116 transcriptomes in fission yeast (Schizosaccharomyces pombe), covering multiple physiological conditions as well as transcriptional and RNA processing mutants. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017